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On the crossover to universal criticality in diIute Ising 
systems 

H K Janssen, K Oerding and E Sengespeick 
Institut fiir Theoretische Physik Ill. Heinrich-Heine-Univenit% Diisseldod UniversititsstmEe 1, 
40225 Diisseldorf, Germany 

Received 21 March 1995 

Abstract. Monte Carlo simularions of the critical behaviour of disordered Ising systems have 
led to concenuation-dependent critical exponents which seem In violate universality. We 
apply the renormalization group to investigate the crossover effects which cause the observed 
behaviour. We improve the three-loop expansion of the Callan-Symzik and Wilson funuions 
by a Pad&-Bore1 approximation and solve the flow equations for various initial points. The 
exponents found in the simulations can be related to regions in the space of coupling coefficients 
away from the fixed point. 

1. Introduction 

Universality is a central feature of critical phenomena. Due to the large correlation length 
near a critical point the singular behaviour of many thermodynamic observables turns out 
to be independent of microscopic details of the system. The mathematical description of 
critical phenomena therefore requires only a small set of relevant and marginal variables. 

In this sense the value of the concentration p of magnetic sites in a rindomly dilute king 
system should be an irrelevant variable, at least if the impurity density is relatively small and 
uncorrelated at long distances. Renormalization group calculations [l-31 show that critical 
exponents and scaling functions are indeed independent of the concentration provided that 
it is above the percolation threshold pc  and smaller than unity. For concentrations below po 
there is no critical point but only Griffiths singulillities [4], whereas for p = 1 the system 
belongs to the universality class of the pure Ising model. 

In contrast to this universality, computer simulations of disordered king systems at 
various concentrations produced apparently concentration-dependent exponents [5-!3]. This 
disagreement with the universality predicted by the renormalization group was shown to 
be induced by a crossover phenomenon which governs a large interval of length scales. 
Universality only holds in the asymptotic scaling regime of large length and time scales 
and is not seen in the limited system sizes accessible to simulations. Thus, the simulations 
show that disordered king systems require a considerably larger system size to reach the 
asymptotic regime than the pure king model. 

It was argued that the smallness of the crossover exponent (@ = (Y = 0.1 1) is responsible 
for this anomalous  behaviour.^ But this exponent only govems the instability of the Ising 
fixed point in the renormalization group sense according to the Harris criterion [9]. In 
principle this exponent has nothing to do with phenomena near the so-called random fixed 
point which characterizes the universality class of the diluted model. Also it is generally 
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misleading to speak of a crossover from king to disordered behaviour. At best what the 
renormalization group can describe is a crossover from non-universal microscopic behaviour 
to macroscopic (or mesoscopic) universal phenomena. Sometimes (if the perturbations are 
small, in our case if p is near unity) this can be described as a crossover between different 
fixed points. In general, the preasymptotic regime (which is accessible to field theory) has 
some non-universal aspects. In our opinion this is the origin of the apparent violation of 
universality in the diluted king system. Therefore one has to find out which features of 
the flow of the (weakly) irrelevant variables under the renormalization group lead to the 
observed slow crossover. 

The field-theoretic formulation of the renormalization group applied to critical 
phenomena, in general, starts from a semi-microscopic point of view and models the system 
under consideration by a Hamiltonian constructed from composed fields relevant or weakly 
irrelevant at least near the upper critical dimension. In the case of our diluted system one 
assumes that the microscopically uncorrelated elimination of magnetic sites on a lattice can 
be formulated semi-microscopically as a Gaussian noise (local, and time independent) in 
the temperature. This is, of course, questionable near the percolation point of the non- 
magnetic sites but should be correct at lower dilutions. Having formulated the disorder in 
this way one can show that deviations from Gaussian behaviour are irrelevant (at least near 
the upper critical dimension). Note that in this argument only the nearly Gaussian character 
and not the weakness of the disorder is involved. These assumptions lead to a field-theoretic 
Hamiltonian for the diluted system which has been used for many years [1,2] and yields 
flow equations for the coupling constants which have a very special property in the king 
case: they are accidentally degenerate at one-loop order of renormalized perturbation theory. 
This degeneracy leads to special features: &-expansions instead of the usual (E = 4 - d)- 
expansion [2,3], and a slow crossover of a new form to the trivial fixed point if d = 4 [lo]. 
In our opinion it is the shadow of this speciality which is responsible for the slow dilution- 
dependent crossover in disordered king systems also in three dimensions. The underlying 
physical reason for this degeneracy is so far unknown, although highly interesting. 

The paper is organized as follows. In the next section we present the field-theoretic 
description for an king model with random impurities and review its renormalization. We 
obtain the Wilson functions at three-loop order in a minimal renormalization scheme and 
solve the renormalization group equation. In section 3 the flow equations for the scale- 
dependent coupling coefficients are solved in the limit of small d = 4-d. While this formal 
limit has no direct physical application it is well suited to elucidate the ideas which motivate 
the case in section 4 where we consider the three-dimensional model. Using a PadkBorel 
approximation to improve the perturbation series for the Wilson functions we calculate 
the flow of the coupling coefficients for various initial points. For each concentration 
p considered in [6] we find coupling constants which explain the measured effective 
exponents. For low dilutions the method applied to identify these coupling constants is 
directly motivated by the form of the flow. In the last section our results are summarized. 

2. The field-theoretic model and its renormalization 

As discussed in the first section, in a field-theoretic model the effect of impurities may 
be described by a local random shift of the temperature. This shift is represented by the 
Gaussian random field @ in the Landau-Ginzburg Hamiltonian 
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where s is a one-component order parameter field. For phase transitions with a 
spontaneously broken O(n)-symmeay (n > 2) the specific heat exponent 01 is negative 
(for d = 3) and the impurities are irrelevant for the asymptotic critical behaviour [SI. 

To compute correlation functions we perform the average over @ at the beginning of the 
calculation. As usual we introduce n replicas se (U = I ,  . . . , n) and take the (n + 0)-limit 
of correlation functions to avoid the problem of @-dependent normalization constants [l]. 
Averaging the Boltzmann weight exp(- ELI ‘&[sa]) with respect to $ yields the effective 
Hamiltonian 

Here the coupling coefficient f measures the correlations of the disorder 

m = 0 @(r)t/r(r’) = fS( r  - T‘) (3) 

where the bar denotes the average with respect to disorder. For g = 0, f c 0 the limit 
n + 0 of correlation functions calculated with the Hamiltonian (2) has been used to study 
the statistics of self-avoiding linear polymers. 

Due to the singular behaviour of the Gaussian propagator at small distances the 
perturbative calculation of Green functions (treating the coupling coefficients f and 
g as perturbations) leads to ultraviolet divergences in the individual terms of the 
perturbation series. We render these terms finite by analytic continuation in d (dimensional 
regularization) and absorb the remaining poles in t into renormalizations of coupling 
coefficients and fields (minimal renormalization). The renormalizations which are necessary 
to render all static correlation functions free of €-poles are defined by 

s 4 i = zys f + p = S,-’(Z,/Z,2)ufiL‘ 
(4) r + = (Z,/z,)s g + = S ; ’ ( Z , , / Z ; ) U ~ ~  

where p is an external momentum scale and Sd is the surface area of the d-dimensional 
unit sphere divided by ( 7 ~ ) ~ .  

The integrals which have to be calculated to obtain the 2-factors at three-loop order 
are the same as in the case of the pure king model. One may thus adopt the integrals 
given in [ll] and multiply them with the required n-dependent symmetry factors [12] (see 
also [131). 

In this paper we also wish to study the critical dynamics of king systems with quenched 
random impurities. In the case of a non-conserved order parameter the dynamics can be 
expressed in the form of the Langevin equation 

where { is a Gaussian random force with zero mean and the correlation 

( ~ ( r ,  r)<(r’, t ’ ) )  = 2A&r - T‘)8(t - t ’ )  . 
An equivalent formulation is given by the stochastic functional [1P17] 

(6) 

where 3 is a response field which has been introduced to average over the thermal noise. 
Correlation functions and response functions can be calculated as functional integrals with 
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the weight exp(-&[Z, SI). Since this weight requires no @-dependent normalization 
constant one may average over disorder without introducing replicas [ 181: 

(8) 
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exp(-&~S', SI) = e x p t - ~ ~ k ,  SI) 

where 

J'[k,s] = S d d r [ S d f k ( ~ , s + A ( r - A ) s + f A g s 3 - ~ ) - ~ A 2 ~ ( S d t k ~ ) ? ] .  (9) 

To render Green functions with different time arguments finite one has to introduce a 
renormalized response field and a renormalized Onsager coefficient: 

(10) 
0 112- 5 -+ 1 = Z, s h -+ = (Z,/Zj)'12A. 

In [12,19] Za was calculated by minimal renormalization to two-loop order. 

renormalization group equation (RGE). The bare Green function 
With the required renormalizations at hand we are in a position to derive the 

&Q,N({r3t)) = ( ~ ( ~ l , t l ) . - . 3 ( ~ E i , ~ ~ ) g ( ~ ~ + l r t ~ + l )  . . .d(~~+N,tfi+N)) (11) 
is independent of the momentum scale p introduced in (4). consequently its derivative at 
fixed bare parameters vanishes: 

Therefore the renormalized Green function G B , ~  satisfies the R E  

with the CallanSymanzik functions 

In equation (13) the last argument L of the Green function denotes the linear size of the 
system. 

At three-loop order we have 
17 2 U 41 2 145 ,%(U, U ) / U  == -E  + ?U 2 - 6~ - EU + T U U  - TU + (T + St(3))~' 

-(% + 18t(3))u2u + (F +72<(3))uu2 - (F + 84<(3))u3 (16) 

(here b is a Riemann <-function), 

+ u ( u , u ) / u =  - e + u - 4 u - ~ u 2 + ~ u u - ~ u = f ~ U 3  2 2 8 

q(u. U) = =U - guu + p - a u  + z u  U - p 2 +  ;iu 

-(% + 35(3))uZu + (Q + 24{(3))uu2 - (y + 33{(3))u3 (17) 

(18) 1 2  1 1 2  1 3  9 2  3 1 3  
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and 

K r ( &  

At WO-loop order the dynamic Wilson function KL is given 6y 

(19) = I, - U - LU2 + ZUU - i u 2  + LU3 - 2?LU2, + muu2 - 111 3 , 
2 24 4 4 16 32 

(20) 

No three-loop calculation has been performed as yet. Only for the pure king model the 
threeloop contribution to K A  was calculated in [20] with the result . 

K L ( U ,  U) = U +  g(61n - 1)u2 - auu + ;U 5 2  . 

a ( u ,  O)/q(u,  0) = (6 In $ - 1) - 4 - (3 - 13 in4 + 21 In 3) In $ - J?’ + 8 l/:dt 3,. ’[ 
(21) 

The general solution of the RGE (13) may be written in the form 

GQ.~((T,  t ) ;  5, L U ,  U; P. 

’= B(r)”/2X(1)N/ZG,,N([r, t); Yz(f)z, Y~(l)1, U ( f ) ,  $1); jd, L) 
= (2 ( f ) l d + 2 ) Q / 2  (X ( I ) P Z ) N l 2  

xGfi,,((l~, YL(f)12f}; Yr(f) f -zr , ’A,  C ( I ) ,  ?(f); p,  f L )  (22) 
where the last equality follows from dimensional analysis, ,and the characteristics are 
solutions of the ordinary differential equations 

d d 
df df 

f-In8(1) = ij(C(f),~J(f)) l-lnX(f) = q(i i ( f ) ,  ;(f)) 

f (1 )  = X(1) = Y,(1) = YA(1) = 1 U(1) = U ?(l) = U .  

For small I equation (22) maps the large length and time scales of the critical region on scales 
on which Green functions may be calculated perturbatively. In this limit the scale-dependent 
coupling constants i ( l )  and V ( l )  approach a fixed point (U,, u.), and the characteristics are 
asymptotically proportional to powers of 1. In this way critical exponents can be identified 
as Wilson functions at the fixed point. 

3. Crossover in 3.99 dimensions 

As already mentioned in the introduction, the renormalization group transformation 
possesses no infrared-stable fixed point of order B .  This peculiarity of the dilute king 
model is due to  the^ degeneracy of the one-loop contributions to j3, and @. (equations (16), 
(17)): both are proportional to ( U - 4 u ) .  The appropriate procedure in this case was found by 
Khmelnitskii who introduced a &-dxpansion to study the critical behaviour of disordered 
king systems [Z]. 

To explain the special propeny of the flow equations, which in our opinion slows down 
the crossover, we now consider a diluted version of the ‘imaginary’ system introduced some 
time ago by Wilson and Fisher [21]. We set, for example, E = & and study the flow for 
a system in 3.99 spatial dimensions. For such a small E we have of course E << &. We 
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represent the renormalized coupling constants as U = Aw’, U = aAwZ, and find the flow 
equations as an expansion with respect to the amplitude A 

H K Janssen er ai 

dlnw 
dt 
- = + A  (1 - W) wZ + o ( A ~ )  

Here we have set I = exp(-t). Equations (24) and (25) yield the well known fixed point 
w, = 1 + 0 (4, A, = f l  +O(E) .  We assume that the flow is driven in a first 
(microscopic) period in aregion around this stable fixed point, thus A << 1. It is easily shown 
that neglecting the third-order terms of the amplitude A in (25) consistently forces neglect 
of the second-order terms in (24). For E # 0, a possible amplitude scaling is A - &. 
The two equations (24) and (25) now exhibit a characteristic two-‘time’ scale behaviour: 
whereas the modulation w evolves on a ‘fast’ scale - A-’ or the amplitude A itself 
varies on the ‘slow’ scale - A-’ or E - ’ ,  respectively. Note that this decoupling of A from 
the fast evolution has its origin in the degeneracy of the one-loop terms in the functions pU 
and p,,. The solution of (24) is given by 

W-2 Ao 
ID- ’+- -  2 f l n l l  - w-’l +constant= - i i ’ d t ’ A ( t ’ )  ij ----t 2 

The last approximation holds for t &-’ << E - ’ ,  Such a time is sufficient to drive w 
practically to one. Thus we have the following Row picture: starting from an initial point 
(AD, WO), the motion goes relatively fast along the trajectory A Ao (U -, u2I3), to the line 
w = 1 (U = uj4). After that, a relatively slow motion on this ‘fixed point’ line sets in. On 
this line the equation of motion for the amplitude A reads 

with the solution 

96~153 
1 + (96s/53AiZ - 1) exp (-2et) 

For t + CO this slow motion leads to the fixed point A, = m. But for a finite system 
the integration of the flow equations has to finish at f - InL, where L is a suitably scaled 
measure of the system size. Then A (ln L) retains information on the initial point through the 
constant A0 = 64uiju;  which leads to a residual dilution dependence. For relatively small 
systems it may occur that the slow motion has not yet set on, and we have A (InL) Ao. 
Instead of the true fixed point A. one has to deal with the (dilution-dependent) quasi-fixed 
point AD. As a result one finds effective dilution-dependent exponents. In general, the 
system sizes used in simulations are not big enough to allow the flow to come sufficiently 
close to the fixed point. Thus one observes a crossover which depends on the dilution p 
through AD. Note that by the clear distinction between the fast and the slow motion, the 
full information on the initial point (UO, UO) is reduced to only one variable A&) after an 
initial ‘time’ period which corresponds to small systems. 

The anomalous dependence of the amplitude A on the system size especially arises for 
E = 0. If w is already neac one, we obtain 
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1 
A =  Jm- . 

The dependence on instead of In L shows the prolonged crossover to the trivial fixed 
point. This anomalous dependence has its parallel in the anomalous logarithmic corrections 
to scaling in dimension four [lo]. 

4. Crossover phenomena 

As already pointed out in section 2 asymptotic scaling behaviour with universal critical 
exponents can only be observed in the limit of large length and time scales. In computer 
simulations the approach to the scaling regime is mainly limited by the linear size L of the 
system. Finite-size scaling 122,231 is valid only in the limit .$ --t 00 0: bulk correlation 
length) and L --z 00 with .$/L arbitrary, whereas in computer simulations L is limited by the 
available CPU time, etc. From the renormalization group point of view the flow parameter I 
is not sufficiently small (it is of the order 1/L) in the experiments by Heuer [6,7] to allow 
an observation of the asymptotic critical behaviour. We therefore have to solve the flow 
equations for C ( I )  and Z ( l )  with initial coupling coefficients (U .  U) different from their fixed 
point values and study the variation of the Wilson functions along the trajectory of the flow. 

To obtain more reliable results we have improved the perturbation series by a modified 
Padi-Bore1 approximation of the form 

for F = bu, v. and y ,  where u(u, U) =.l/(2 - K ~ ( u ,  U)) and y(u, U) = v(u, u)(2 - 
~ ( u ,  U)). Since the threeloop expansion of F is not sufficient to determine all coefficients 
aij and bij in (31) one has to invoke an additional criterion to fix two coefficients and the 
exponent b. The large-order behaviour of the perturbation theory suggests the same values 
blo = 5 and bo, = -; for all functions F(u,  U). To see this consider the perturbation series 
of the p-function of the pure O(n)-symmetric ~5~-field theory [24]: 

1 

where 

OK = K!aKK6c(1 + o ( ~ / K ) )  a = -i 6 = 3 + n / 2  (33) 

(n = 1 for the king model). The same constant a as in (33) occurs in the large- 
order behaviour of the perturbation series of the Wilson functions U@), y(u), etc. For 
blo = -a = i, b = f the expansion of F(u ,  0) in powers of U shows the same large-order 
behaviour as b(u). 

Since the case U = 0, U e 0 corresponds to the excluded volume problem (n = 0) we set 
b = 3 in the Padi-Bore1 approximation for @.(U, U). The coefficient bo1 = 30 = -% results 
from the different normalization of the coupling coefficients f aid g in the Hamiltonian (2). 
To calculate the critical exponents y and v we have applied a Pad6-Bore1 approximation for 
y(u,  U) and u(u,  U) with b = 0. In table 1 the exponents obtained in this way are compared 
with results given in the literature. 

Some solutions of the flow equations (23) are depicted in figure 1 together with the 
fixed point of the pure (I) and the random (R) king model. Near the rhdom fixed point 
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Table 1. Critical exponentr of Ihe p m  and the disordered Ising model. The exponents of the 
pure king model in the fint line were calculated by methods of summation based on Borel 
transformation and conformal mapping [Z]. The exponents of the disordered king model in 
the third line were obtained by a four-loop calcularion in d = 3 with a [3/1] Pad&-Bore1 
approximation [26]. The exponents in the second and fourth lines are computed by the pad& 
Borel approximation (31) described in the text. 

Y ” B Q 

Pure lsing model 
LeG and W 1.241(2) 0.6300(15) 0.3250(15) O.llOO(45) . .  . .  . .  
Pad&BoreI (32) 1.251 0.635 0.327 0.095 
Dilute Ising model 
Four loop 1.321 0.6714 0.348 -0.013 
Pad€-Bo& (32) 1.313 0.666 0.342 0.002 

0.4 I I I / 
’ I . 

v 0.2 1 I I I 
I, , 

0.3 

0.1 

0 
0.8 

I I I I 1 
~ ~~ 

1 1.2 I .4 1.6 1.8 2 
U 

Figure 1. The Row of the coupling constants for various initial points. I denotes the fixed point 
of the pure Ising model and R indicates the infrared stable disorder fixed point. 

the Row may be characterized by the eigenvalues (A,, Az) and eigenvectors (201, wz) of the 
stability mamx 

1. a,,w, UIIR a , ~ u .  U)IR ( au,uu ,  U)IR auB.(u, U)IR 

Ax = 0.365603 W I  = (0.951 61, 0.307309)T (34) 
hz = 0.768855 wz = (0.988237, 0.152928)T. (35) 

With the PadeBorel approximation (31) for the Callan-Symanzik functions pu and /J’” we 
obtain 

The eigenvector w1 (which belongs to the smaller eigenvalue A I )  defines the direction from 
which the flow approaches the~fixed point at the final stage of the crossover. The point R 
is reached in the limit I + 0 for all initial coupling constants U, U > 0. For small U the 
trajectory first approaches the unstable manifold of the king fixed point and then changes 
its direction towards the random fixed point. In this range one may speak of a crossover 
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from king to random behaviour. In a shict continuum field theory the flow approaches the 
line I-R from the left since for U = 0 all the range 0 < g c 00 is mapped to the interval 
0 < U < U; by the minimal renormalization scheme. However, to explain the sign of the 
corrections to scaling observed in pure king systems one has to apply the RGE in the region 
of coupling coefficients above the fixed point, i.e. U > U; [27]. This can be justified by a 
finite lattice spacing A-' which allows an approach to the fixed point from above [2X, 291. 
Applying these considerations to the random king model we expect that due to the finite 
lattice spacing in the simulations the Row approaches the unstable manifold of the Ising 
fixed point from the right. 

We explain the crossover phenomena observed at low dilutions by the two different 
stages of the Row ( i ( l ) ,  a@)): in the simulations the effective couplings have already 
reached the line that connects the two fixed points but not the stable fixed point R. At this 
point it is helpful to remember the 3.99-dimensional case discussed in section 3 where the 
modulation w evolves rapidly to its fixed point value w, while the amplitude A requires a 
very large 'time' t = In(l/l) to come close to A,. In this picture the line I-R corresponds 
to a part of the manifold defined by the equation w(u,  U) = wi. 

Table 2 Effective critical exponents calculated from the Waon functions "(U, v ) ,  y(u, U), and 
z(u. v )  compared with results of computer simulations. 

Calculation Simulation 

D &Ti U,** U V z " " L ... ... 
1.0 0.982 0 0.635 1.251 ~2.029 0.624(10) 1.22(2) 2.085(10) 
0.95 1.182 0.066 0.64 1.277 2.094 0.64(2) 1.28(3) 215(1) 
0.9 1.375 0.128 0.662 1.306 2.162 0.65(2) 1.31(3) 2.23(1) 
0.8 1.647 0216 0.684 1.351 2.268 0.68(2) 1.35(3) 2.39(1) 
0.6 2.353 0.444 0.755 1.501 2.597 0.72(2) l.51(3) 2.92(2) 

To check this assumption more quantitatively we have studied the Wilson functions 
u(u,  U) and y(u ,  U) along the line I-R. It is possible to identify points on this line 
which reproduce the exponents v and y obtained in the simulations at p = 0.95 and 
0.9 within the bounds of the experimental accuracy (see table 2). The dynamic exponents 
z(u, U) = 2 + K A ( U ,  U) calculated in this way are clearly smaller than the values obtained 
by Heuer [7]. Even for the pure king model the exponent z obtained by the same Monte 
Carlo method is larger than the value predicted by dynamic field theory 1301. The reason 
for,this disagreement is not de&. Note that the most,reliable values for r are in agreement 
with the field-theoretic predictions based on (21) (see [31] and references therein). On the 
other hand, since the Wilson function KL is knob only at two-loop order we expect our 
approximations to be less accurate for z than for v and y .  At the random fixed point we 
find z = 2.180. The naive *-expansion yields 

Q 

= 2 f 0.336&(1 - 0.932&) + U(6") (36) 
(with the three-dimensional estimate z = 2.023) while a two-loop calculation in d = 3 
yields z = 2.237 [32]. 

The effective exponents measured at higher dilutions ( p  = 0.6 and 0.8) cannot be related 
to points on the unstable manifold of the pure king fixed point since they require larger 
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0.69 

0.68 

0.67 

0.66 

0.65 

0.64 

0.63 

0.62 5 10 15 20 25 30 
I n ( I t 1 )  

Figure 2. The Wilson function w(C(1). < ( I ) )  for initial coupling CON~LUUS (a) (U, U) = 
(0.8,O.OOl). (b) (U, v )  = (2.0.01). (c) (U. U) = (1.5.0.4) and (d) (U. v )  = (2.0.4). The curves 
(a) and (b) correspond to trajectories which approach the line I-R from different directions. 
Therefore they differ for large &(If I )  (when the mjectories have reached the line I-R) only by 
a shift parallel ro the abscissa. 

coupling coefficients U. Close to the random fixed point almost all trajectories run along 
the line 

(u(t),  U ( Q )  = (U*, U,) + tw: (37) 
where w1 is the vector defined in  (34). It is therefore natural to look for the observed 
exponents on this line. The coupling coefficients (um, ucw) given in table 2 for p = 0.8 and 
p = 0.6 are obtained by minimizing the squared deviations from the experimental results, 
i.e. 

a h J ( u ( 0 .  W )  - VSlp)z 4- a,(y(u(t)* u( t ) )  - YexP)z + az(z(u(0. U@)) - z,p)2 (38) 
with a, =ay = 1 and a, = 0.01. We have chosen the weight a, much smaller than ay and 
ay to reduce the influence of the function .?(U, U) which is known only to two-loop order. 
Although the coupling constants (uc8, U&) obtained by the minimization of (38) are far 
away from the fixed point (especially for p = 0.6) the exponents v and y agree surprisingly 
well with the experimental values. 

In figure 2 the Wilson function v(ri(l), i;(l)) is shown for various initial coupling 
coefficients using a logarithmic scale for the flow parameter 1. In Monte Carlo simulations 
only a relatively small range of flow parameters can be investigated. The range of system 
sizes L = 20.. .60 studied in [6] corresponds to an interval of length A In( l/l) = In 3 x 1.1 
in figure 2. 

We conclude this section with a discussion of the size dependence of relaxation times. 
In 171 the relaxation time of the absolute value M = [MI of the magnetization was measured 
to obtain the effective dynamic exponents shown in table 2 The integrated relaxation time 
is defined by 
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and satisfies the RGE 
a 

T ~ ( t , u , u , A ; ~ . L ) .  (40) 

Solving this equation by the method of characteristics and performing a dimensional analysis 
one can easily show that 

&(r, U, U , ~ A ;  p, L )  = l-z(hY~(l))-'TM(~i(~)~-z5, U @ ) ,  <(l);  1, P, !L ) .  (41) 
We choose the flow parameter 1 = Lo/L (where Lo is some given system size) to obtain at 
the critical point t = 0 

TM(O,  U ,  U ,  A; P ,  (42) 
The function TM can be calculated at leading order in €'I4 by the methods used in [23] to 
compute the relaxation time spectra. If the ratio LILO is not considerably larger than unity 
the L dependence of the relaxation time is dominated by the characteristic Y,, which may 
be written as an integral over KA, 

= (L/LO)~(AY*(LO/L))-'TM(O, U(LO/L) ,  ~ ( L o / L ) ;  1, f i ,  LO). 

For the range of system sizes investigated in the simulations one may use the approximation 
~ ( i i ( ! ) ,  C(1)) = K A ( u , ~ ,  v,ti), where u,ti = U(1) and U,$ = :(I), to anive at the effective 
power law 

TM(L)  * TM(LO)(L/LO)&= zeff = 2 + KA(U+ u e d .  (44) 
The simulations show that this approximation is justified for LO = 20 < L < 60 (see 171, 
figure 3). 

5. Summary and outlook 

 the study of randomly diluted Ising systems by computer simulations has shown the 
importance of crossover phenomena for the critical behaviour of these systems. The critical 
exponents found in the simulations depend on the concentration p of magnetic sites while 
renormalization group calculations predict universal exponents. In this paper we have shown 
how the observed crossover effects can be explained in the framework of the renormalization 
group. 

While the universal critical exponents correspond to an infrared stable fixed point of 
the flow equations, the dilution-dependent exponents occur in experiments in which the 
relevant length or time scales are not sufficiently large to enter the asymptotic scaling 
regime. This suggests describing the results of the simulations by coupling constants 
different from their fixed point values. For each concentration p = 0.95,0.9,0.8 and 0.6 we 
have found coupling coefficients which reproduce the effective exponents U and y obtained 
by Heuer [6] with satisfactory accuracy. For this purpose a Pad6-Bore1 approximation 
has been used to improve the three-loop expansions of the Callan-Symanzik and Wilson 
functions. Unfortunately the Wilson function K A ( U ,  U) which is necessary to calculate the 
exponent z is known only at two-loop level. This may explain the disagreement between 
the calculated and measured values for z. 

While the goal of this paper was the explanation of crossover phenomena which have 
already been observed in computer experiments one may also use the effective coupling 
coefficients U& to predict the outcome of future experiments. In a subsequent 
publication we will study the non-equilibrium critical relaxation of dilute Ising systems 
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from an initial state with short-range correlations. The relaxation process is governed by 
a new universal exponent 8' [17,33] which can be calculated by renormalization group 
methods. We expect that Monte Carlo simulations of the relaxation will be affected by 
crossover phenomena leading to non-asymptotic (dilution-dependent) exponents 0'. 
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